Variable Selection with Regression Trees
نویسندگان
چکیده
منابع مشابه
Regression Trees With Unbiased Variable Selection and Interaction Detection
We propose an algorithm for regression tree construction called GUIDE. It is specifically designed to eliminate variable selection bias, a problem that can undermine the reliability of inferences from a tree structure. GUIDE controls bias by employing chi-square analysis of residuals and bootstrap calibration of significance probabilities. This approach allows fast computation speed, natural ex...
متن کاملVariable selection bias in regression trees with constant fits
The greedy search approach to variable selection in regression trees with constant fits is considered. At each node, the method usually compares the maximally selected statistic associated with each variable and selects the variable with the largest value to form the split. This method is shown to have selection bias, if predictor variables have different numbers of missing values and the bias ...
متن کاملBayesian Approximate Kernel Regression with Variable Selection
Nonlinear kernel regression models are often used in statistics and machine learning due to greater accuracy than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this paper, we propose a novel framework that provides an analog of the eff...
متن کاملVariable Selection in ROC Regression
Regression models are introduced into the receiver operating characteristic (ROC) analysis to accommodate effects of covariates, such as genes. If many covariates are available, the variable selection issue arises. The traditional induced methodology separately models outcomes of diseased and nondiseased groups; thus, separate application of variable selections to two models will bring barriers...
متن کاملVariable Selection for Regression Models
A simple method for subset selection of independent variables in regression models is proposed. We expand the usual regression equation to an equation that incorporates all possible subsets of predictors by adding indicator variables as parameters. The vector of indicator variables dictates which predictors to include. Several choices of priors can be employed for the unknown regression coeecie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2010
ISSN: 1225-066X
DOI: 10.5351/kjas.2010.23.2.357